Biomateriały nowej generacji – aby implanty były trwalsze

Opracowanie biomateriałów implantacyjnych nowej generacji – to cel badań prowadzonych przez naukowców z Polski i Austrii. Dzięki temu implanty chirurgiczne będą trwalsze i lepszej jakości, a to przełoży się m.in. na rzadszą konieczność ich usuwania lub rewizji.

Polsko-austriacki projekt jest kierowany przez dr inż. Agnieszkę Tomalę z Politechniki Krakowskiej oraz prof. Carstena Gachota z Uniwersytetu Technicznego w Wiedniu. Partnerem jest także Uniwersytet Łódzki. Badania polskich zespołów są finansowanego ze środków NCN w ramach konkursu OPUS 24+ LAP.

– Nasze badania odpowiadają na wyzwania związane z postępującym się starzeniem społeczeństwa oraz obserwowanym zwiększeniem częstotliwości stosowania implantów ortopedycznych. Dzisiaj implanty są projektowane tak, aby ich trwałość była jak największa, w rzeczywistości jednak są niedoskonałe – podkreśliła fizyk dr inż. Agnieszka Tomala w rozmowie z Nauką w Polsce.

Jak tłumaczyła naukowczyni, cykliczne obciążenia oraz tarcie prowadzi do ścierania i powstawania cząstek zużycia powodujących zapalenia, a w konsekwencji do awarii całego implantu i konieczności operacji ich usunięcia lub rewizji (wymiany). – Konieczna jest zatem osteointegracja biomateriału kompozytowego z kością, co zapobiegnie obluzowaniu się implantu, a tym samym poprawi jego trwałość – dodała.

Celem projektu jest więc opracowanie nowatorskiego biomateriału kompozytowego, o wysokiej jakości i trwałości. W skład tego materiału wchodzi tytan (Ti), hydroksyapatyt (HAp) oraz innowacyjny dwuwymiarowy nanomateriał MXene. – MXene, posiada warstwowe ułożenie struktur dwuwymiarowych, tworzących morfologię płatkową, które łatwo przesuwają się względem siebie. MXenes składają się zazwyczaj z tytanu i węgla, które posiadają już udowodnione doskonałe właściwości w wielu zastosowaniach technicznych i medycznych – wskazała Tomala.

Ponadto, naukowcy w swoich pracach badawczych wykorzystają innowacyjną technikę. – Promieniowanie laserowe zostanie wykorzystane do wytworzenia uporządkowanych małych kieszeni na powierzchni materiału. Taka strukturyzacja laserowa otwiera głębokie pory w kompozytach Ti/HAp/MXene, co dodatkowo poprawi transport i wzrost komórek osteogennych w obszarze implantu. Ponadto kieszenie laserowe mogą służyć jako zbiorniki na płyny fizjologiczne smarujące zmniejszające tarcie i zużycie zaangażowanych powierzchni. W tym konkretnym rozwiązaniu środkiem smarującym, poprawiającym charakterystyki tribologiczne będzie MXene – powiedziała badaczka.

Opracowane biomateriały zostaną następnie poddane ocenie biozgodności in-vitro: kompleksowym badaniom z wykorzystaniem technik hodowli komórkowych, badaniom mikrobiologicznym, prozapalnym, pro-regeneracyjnym i morfologicznym.

Opisywane badania to badania podstawowe. Przed potencjalnym wdrożeniem, zanim biomateriał mógłby być wykorzystywany do leczenia, musiałby przejść jeszcze wiele badań m.in. ocenę bezpieczeństwa i bioaktywności in vivo użytych materiałów, wykluczenia potencjalnego działania genotoksycznego/rakotwórczego, wykluczenia interakcji z krwią i działania drażniącego/uczulającego na skórę oraz charakterystykę jakościową i ilościową produktów rozpadu badanych materiałów.

Projekt pt. Przyszła generacja bioaktywnych strukturyzowanych laserowo biomateriałów na bazie Ti/HAp/MXene jest finansowany ze środków Narodowego Centrum Nauki w ramach konkursu OPUS 24+ LAP. Zadania badawcze realizowane przez polskie zespoły będą finansowane ze środków NCN w kwocie ponad 1,7 mln zł, zaś koszt pracy zespołów austriackich pokryje Austrian Science Fund (FWF).

Partnerami projektu są: Wydział Inżynierii Materiałowej i Fizyki Politechniki Krakowskiej im. Tadeusza Kościuszki, Wydział Biologii i Ochrony Środowiska Uniwersytetu Łódzkiego oraz Wydział Inżynierii Mechanicznej Uniwersytetu Technicznego w Wiedniu. (PAP – Nauka w Polsce)

Agnieszka Kliks-Pudlik, fot. freepik.com

Data publikacji: 16.08.2023 r.

Udostępnij

Zachęcamy do zapisania się do Newslettera

Przeczytaj również